Lab 0: Getting Started with dplyr

Your First Data Analysis

Author

Sujan Kakumanu

Published

September 15, 2025

Overview

Welcome to your first lab! In this (not graded) assignment, you’ll practice the fundamental dplyr operations I overviewed in class using car sales data. This lab will help you get comfortable with:

  • Basic data exploration
  • Column selection and manipulation
  • Creating new variables
  • Filtering data
  • Grouping and summarizing

Instructions: Copy this template into your portfolio repository under a lab_0/ folder, then complete each section with your code and answers. You will write the code under the comment section in each chunk. Be sure to also copy the data folder into your lab_0 folder.

Setup

# Load the tidyverse library
library(tidyverse)

# Read in the car sales data
# Make sure the data file is in your lab_0/data/ folder
car_data <- read_csv("../data/car_sales_data.csv")

Exercise 1: Getting to Know Your Data

1.1 Data Structure Exploration

Explore the structure of your data and answer these questions:

# Use glimpse() to see the data structure


# Check the column names


# Look at the first few rows
head(car_data)
# A tibble: 6 × 7
  Manufacturer Model     `Engine size` `Fuel type` `Year of manufacture` Mileage
  <chr>        <chr>             <dbl> <chr>                       <dbl>   <dbl>
1 Ford         Fiesta              1   Petrol                       2002  127300
2 Porsche      718 Caym…           4   Petrol                       2016   57850
3 Ford         Mondeo              1.6 Diesel                       2014   39190
4 Toyota       RAV4                1.8 Hybrid                       1988  210814
5 VW           Polo                1   Petrol                       2006  127869
6 Ford         Focus               1.4 Petrol                       2018   33603
# ℹ 1 more variable: Price <dbl>

Questions to answer: - How many rows and columns does the dataset have? - What types of variables do you see (numeric, character, etc.)? - Are there any column names that might cause problems? Why?

Your answers: - Rows: 50000 - Columns: 7
- Variable types: Strings and Numbers - Problematic names: Year of manufacture is stored as a number rather than in a date format (date would be easier to do time based calculations on). Also, the column name is way too long.

1.2 Tibble vs Data Frame

Compare how tibbles and data frames display:

# Look at the tibble version (what we have)
car_data
# A tibble: 50,000 × 7
   Manufacturer Model    `Engine size` `Fuel type` `Year of manufacture` Mileage
   <chr>        <chr>            <dbl> <chr>                       <dbl>   <dbl>
 1 Ford         Fiesta             1   Petrol                       2002  127300
 2 Porsche      718 Cay…           4   Petrol                       2016   57850
 3 Ford         Mondeo             1.6 Diesel                       2014   39190
 4 Toyota       RAV4               1.8 Hybrid                       1988  210814
 5 VW           Polo               1   Petrol                       2006  127869
 6 Ford         Focus              1.4 Petrol                       2018   33603
 7 Ford         Mondeo             1.8 Diesel                       2010   86686
 8 Toyota       Prius              1.4 Hybrid                       2015   30663
 9 VW           Polo               1.2 Petrol                       2012   73470
10 Ford         Focus              2   Diesel                       1992  262514
# ℹ 49,990 more rows
# ℹ 1 more variable: Price <dbl>
# Convert to regular data frame and display
car_df <- as.data.frame(car_data)
head(car_df)
  Manufacturer      Model Engine size Fuel type Year of manufacture Mileage
1         Ford     Fiesta         1.0    Petrol                2002  127300
2      Porsche 718 Cayman         4.0    Petrol                2016   57850
3         Ford     Mondeo         1.6    Diesel                2014   39190
4       Toyota       RAV4         1.8    Hybrid                1988  210814
5           VW       Polo         1.0    Petrol                2006  127869
6         Ford      Focus         1.4    Petrol                2018   33603
  Price
1  3074
2 49704
3 24072
4  1705
5  4101
6 29204

Question: What differences do you notice in how they print?

Your answer: In the rendered q markdown view, the tibble is much cleaner. It prints the size of the tibble, but only shows 10 rows and however many columns fit properly in the view. The dataframe prints the all 5000 rows! I’ve edited the code to only print the head() to avoid this.

Exercise 2: Basic Column Operations

2.1 Selecting Columns

Practice selecting different combinations of columns:

# Select just Model and Mileage columns
model_mileage <- car_data %>%
  select(Model, Mileage)


# Select Manufacturer, Price, and Fuel type
manufacturer_price_fuel <- car_data %>%
  select(Manufacturer, Price, `Fuel type`)


# Challenge: Select all columns EXCEPT Engine Size
car_data_sans_engine <- car_data %>%
  select(!`Engine size`)

2.2 Renaming Columns

Let’s fix a problematic column name:

# Rename 'Year of manufacture' to year
car_data <- car_data %>%
  rename(year = `Year of manufacture`)


# Check that it worked
names(car_data)
[1] "Manufacturer" "Model"        "Engine size"  "Fuel type"    "year"        
[6] "Mileage"      "Price"       

Question: Why did we need back-ticks around Year of manufacture but not around year?

Your answer: There are spaces in the column name, so the backticks help R understand what the full name.

Exercise 3: Creating New Columns

3.1 Calculate Car Age

# Create an 'age' column (2025 minus year of manufacture)
car_data <- car_data %>%
  mutate(age = 2025-year)

# Create a mileage_per_year column  
car_data <- car_data %>%
  mutate(mileage_per_year = Mileage/age)

# Look at your new columns
#select(car_data, Model, year, age, Mileage, mileage_per_year)
car_data %>%
  select(Model, year, age, Mileage, mileage_per_year)
# A tibble: 50,000 × 5
   Model       year   age Mileage mileage_per_year
   <chr>      <dbl> <dbl>   <dbl>            <dbl>
 1 Fiesta      2002    23  127300            5535.
 2 718 Cayman  2016     9   57850            6428.
 3 Mondeo      2014    11   39190            3563.
 4 RAV4        1988    37  210814            5698.
 5 Polo        2006    19  127869            6730.
 6 Focus       2018     7   33603            4800.
 7 Mondeo      2010    15   86686            5779.
 8 Prius       2015    10   30663            3066.
 9 Polo        2012    13   73470            5652.
10 Focus       1992    33  262514            7955.
# ℹ 49,990 more rows

3.2 Categorize Cars

# Create a price_category column where if price is < 15000, it is coded as budget, between 15000 and 30000 is midrange and greater than 30000 is luxury (use case_when)
car_data <- car_data %>%
  mutate(price_category = case_when(
    Price > 30000 ~ "luxury",
    Price >= 15000 & Price <= 30000 ~ "midrange",
    .default = "budget"
  ))


# Check your categories select the new column and show it
car_data %>%
  select(Manufacturer, Model, price_category)
# A tibble: 50,000 × 3
   Manufacturer Model      price_category
   <chr>        <chr>      <chr>         
 1 Ford         Fiesta     budget        
 2 Porsche      718 Cayman luxury        
 3 Ford         Mondeo     midrange      
 4 Toyota       RAV4       budget        
 5 VW           Polo       budget        
 6 Ford         Focus      midrange      
 7 Ford         Mondeo     budget        
 8 Toyota       Prius      luxury        
 9 VW           Polo       budget        
10 Ford         Focus      budget        
# ℹ 49,990 more rows

Exercise 4: Filtering Practice

4.1 Basic Filtering

# Find all Toyota cars
car_data %>%
  filter(Manufacturer == "Toyota")
# A tibble: 12,554 × 10
   Manufacturer Model `Engine size` `Fuel type`  year Mileage Price   age
   <chr>        <chr>         <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
 1 Toyota       RAV4            1.8 Hybrid       1988  210814  1705    37
 2 Toyota       Prius           1.4 Hybrid       2015   30663 30297    10
 3 Toyota       RAV4            2.2 Petrol       2007   79393 16026    18
 4 Toyota       Yaris           1.4 Petrol       1998   97286  4046    27
 5 Toyota       RAV4            2.4 Hybrid       2003  117425 11667    22
 6 Toyota       Yaris           1.2 Petrol       1992  245990   720    33
 7 Toyota       RAV4            2   Hybrid       2018   28381 52671     7
 8 Toyota       Prius           1   Hybrid       2003  115291  6512    22
 9 Toyota       Prius           1   Hybrid       1990  238571   961    35
10 Toyota       Prius           1.8 Hybrid       2017   31958 38961     8
# ℹ 12,544 more rows
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>
# Find cars with mileage less than 30,000
car_data %>%
  filter(Mileage < 30000)
# A tibble: 5,402 × 10
   Manufacturer Model      `Engine size` `Fuel type`  year Mileage Price   age
   <chr>        <chr>              <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
 1 Toyota       RAV4                 2   Hybrid       2018   28381 52671     7
 2 VW           Golf                 2   Petrol       2020   18985 36387     5
 3 BMW          M5                   4   Petrol       2017   22759 97758     8
 4 Toyota       RAV4                 2.4 Petrol       2018   24588 49125     7
 5 VW           Golf                 2   Hybrid       2018   25017 36957     7
 6 Porsche      718 Cayman           2.4 Petrol       2021   14070 69526     4
 7 Ford         Focus                1.8 Petrol       2020   22371 40336     5
 8 Ford         Mondeo               1.6 Diesel       2015   21834 28435    10
 9 VW           Passat               1.6 Diesel       2018   22122 36634     7
10 VW           Passat               1.4 Diesel       2020   21413 39310     5
# ℹ 5,392 more rows
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>
# Find luxury cars (from price category) with low mileage
car_data %>%
  filter(Mileage < 30000 & price_category == "luxury")
# A tibble: 3,256 × 10
   Manufacturer Model      `Engine size` `Fuel type`  year Mileage Price   age
   <chr>        <chr>              <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
 1 Toyota       RAV4                 2   Hybrid       2018   28381 52671     7
 2 VW           Golf                 2   Petrol       2020   18985 36387     5
 3 BMW          M5                   4   Petrol       2017   22759 97758     8
 4 Toyota       RAV4                 2.4 Petrol       2018   24588 49125     7
 5 VW           Golf                 2   Hybrid       2018   25017 36957     7
 6 Porsche      718 Cayman           2.4 Petrol       2021   14070 69526     4
 7 Ford         Focus                1.8 Petrol       2020   22371 40336     5
 8 VW           Passat               1.6 Diesel       2018   22122 36634     7
 9 VW           Passat               1.4 Diesel       2020   21413 39310     5
10 Toyota       RAV4                 2.4 Petrol       2021    6829 66031     4
# ℹ 3,246 more rows
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>

4.2 Multiple Conditions

# Find cars that are EITHER Honda OR Nissan
# Note: I used %in% to avoid writing Manufacturer twice.
car_data %>%
  filter(Manufacturer %in% c("Honda", "Nissan"))
# A tibble: 0 × 10
# ℹ 10 variables: Manufacturer <chr>, Model <chr>, Engine size <dbl>,
#   Fuel type <chr>, year <dbl>, Mileage <dbl>, Price <dbl>, age <dbl>,
#   mileage_per_year <dbl>, price_category <chr>
# Find cars with price between $20,000 and $35,000
# Note: I used between() to have a more concise query.
car_data %>%
  filter(between(Price, 20000, 35000 ))
# A tibble: 7,301 × 10
   Manufacturer Model  `Engine size` `Fuel type`  year Mileage Price   age
   <chr>        <chr>          <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
 1 Ford         Mondeo           1.6 Diesel       2014   39190 24072    11
 2 Ford         Focus            1.4 Petrol       2018   33603 29204     7
 3 Toyota       Prius            1.4 Hybrid       2015   30663 30297    10
 4 Toyota       Prius            1.4 Hybrid       2016   43893 29946     9
 5 Toyota       Prius            1.4 Hybrid       2016   43130 30085     9
 6 VW           Passat           1.6 Petrol       2016   64344 23641     9
 7 Ford         Mondeo           1.6 Diesel       2015   21834 28435    10
 8 BMW          M5               4.4 Petrol       2008  109941 31711    17
 9 BMW          Z4               2.2 Petrol       2014   61332 26084    11
10 Porsche      911              3.5 Petrol       2003  107705 24378    22
# ℹ 7,291 more rows
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>
# Find diesel cars less than 10 years old
car_data %>%
  filter (age < 10 & `Fuel type` == "Diesel")
# A tibble: 2,040 × 10
   Manufacturer Model   `Engine size` `Fuel type`  year Mileage Price   age
   <chr>        <chr>           <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
 1 Ford         Fiesta            1   Diesel       2017   38370 16257     8
 2 VW           Passat            1.6 Diesel       2018   22122 36634     7
 3 VW           Passat            1.4 Diesel       2020   21413 39310     5
 4 BMW          X3                2   Diesel       2018   27389 44018     7
 5 Ford         Mondeo            2   Diesel       2016   51724 28482     9
 6 Porsche      Cayenne           2.6 Diesel       2019   20147 76182     6
 7 VW           Polo              1.2 Diesel       2018   37411 19649     7
 8 Ford         Mondeo            1.8 Diesel       2016   29439 30886     9
 9 Ford         Mondeo            1.4 Diesel       2020   18929 37720     5
10 Ford         Mondeo            1.4 Diesel       2018   42017 28904     7
# ℹ 2,030 more rows
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>

Question: How many diesel cars are less than 10 years old?

Your answer: 2040

Exercise 5: Grouping and Summarizing

5.1 Basic Summaries

# Calculate average price by manufacturer
avg_price_by_brand <- car_data %>%
  group_by(Manufacturer) %>%
  summarize(avg_price = mean(Price, na.rm = TRUE))

avg_price_by_brand
# A tibble: 5 × 2
  Manufacturer avg_price
  <chr>            <dbl>
1 BMW             24429.
2 Ford            10672.
3 Porsche         29104.
4 Toyota          14340.
5 VW              10363.
# Calculate average mileage by fuel type
avg_price_by_fuel_type <- car_data %>%
  group_by(`Fuel type`) %>%
  summarize(avg_price = mean(Price, na.rm = TRUE))

avg_price_by_fuel_type
# A tibble: 3 × 2
  `Fuel type` avg_price
  <chr>           <dbl>
1 Diesel         13145.
2 Hybrid         14949.
3 Petrol         13691.
# Count cars by manufacturer
count_by_manufacturer <- car_data %>%
  group_by(Manufacturer) %>%
  summarize("Count" = n())

count_by_manufacturer
# A tibble: 5 × 2
  Manufacturer Count
  <chr>        <int>
1 BMW           4965
2 Ford         14959
3 Porsche       2609
4 Toyota       12554
5 VW           14913

5.2 Categorical Summaries

# Frequency table for price categories

Submission Notes

To submit this lab: 1. Make sure your code runs without errors 2. Fill in all the “[YOUR ANSWER]” sections and complete all of the empty code! 3. Save this file in your portfolio’s lab_0/ folder 4. Commit and push to GitHub 5. Check that it appears on your GitHub Pages portfolio site

Questions? Post on the canvas discussion board or come to office hours!