Fan Yang - MUSA 5080
  • Home
  • Weekly Notes
    • Week 1
    • Week 2
    • Week 3
  • Labs
    • Lab 1: Setup Instructions
    • Lab 2: Getting Started with dplyr
    • Lab 3: Data Visualization and EDA
    • Lab 4: Spatial Operations with Pennsylvania Data
  • Assignments
    • Assignment 1: Census Data Quality for Policy Decisions
    • Assignment 2: Spatial Analysis and Visualization

On this page

  • Overview
  • Setup
  • Exercise 1: Getting to Know Your Data
    • 1.1 Data Structure Exploration
    • 1.2 Tibble vs Data Frame
  • Exercise 2: Basic Column Operations
    • 2.1 Selecting Columns
    • 2.2 Renaming Columns
  • Exercise 3: Creating New Columns
    • 3.1 Calculate Car Age
    • 3.2 Categorize Cars
  • Exercise 4: Filtering Practice
    • 4.1 Basic Filtering
    • 4.2 Multiple Conditions
  • Exercise 5: Grouping and Summarizing
    • 5.1 Basic Summaries
    • 5.2 Categorical Summaries
  • Submission Notes

Lab 0: Getting Started with dplyr

Your First Data Analysis

Author

Fan Yang

Published

September 15, 2025

Overview

Welcome to your first lab! In this (not graded) assignment, you’ll practice the fundamental dplyr operations I overviewed in class using car sales data. This lab will help you get comfortable with:

  • Basic data exploration
  • Column selection and manipulation
  • Creating new variables
  • Filtering data
  • Grouping and summarizing

Instructions: Copy this template into your portfolio repository under a lab_0/ folder, then complete each section with your code and answers. You will write the code under the comment section in each chunk. Be sure to also copy the data folder into your lab_0 folder.

Setup

# Load the tidyverse library
library(tidyverse)

# Read in the car sales data
# Make sure the data file is in your lab_0/data/ folder
car_data <- read_csv("data/car_sales_data.csv")

Exercise 1: Getting to Know Your Data

1.1 Data Structure Exploration

Explore the structure of your data and answer these questions:

# data structure
glimpse(car_data)
Rows: 50,000
Columns: 7
$ Manufacturer          <chr> "Ford", "Porsche", "Ford", "Toyota", "VW", "Ford…
$ Model                 <chr> "Fiesta", "718 Cayman", "Mondeo", "RAV4", "Polo"…
$ `Engine size`         <dbl> 1.0, 4.0, 1.6, 1.8, 1.0, 1.4, 1.8, 1.4, 1.2, 2.0…
$ `Fuel type`           <chr> "Petrol", "Petrol", "Diesel", "Hybrid", "Petrol"…
$ `Year of manufacture` <dbl> 2002, 2016, 2014, 1988, 2006, 2018, 2010, 2015, …
$ Mileage               <dbl> 127300, 57850, 39190, 210814, 127869, 33603, 866…
$ Price                 <dbl> 3074, 49704, 24072, 1705, 4101, 29204, 14350, 30…
# Variable types
var_types <- sapply(car_data, class)
var_types
       Manufacturer               Model         Engine size           Fuel type 
        "character"         "character"           "numeric"         "character" 
Year of manufacture             Mileage               Price 
          "numeric"           "numeric"           "numeric" 
# Problematic names
problematic_names <- names(car_data)[!make.names(names(car_data)) == names(car_data)]
problematic_names
[1] "Engine size"         "Fuel type"           "Year of manufacture"
# Look at the first few rows
head(car_data)
# A tibble: 6 × 7
  Manufacturer Model     `Engine size` `Fuel type` `Year of manufacture` Mileage
  <chr>        <chr>             <dbl> <chr>                       <dbl>   <dbl>
1 Ford         Fiesta              1   Petrol                       2002  127300
2 Porsche      718 Caym…           4   Petrol                       2016   57850
3 Ford         Mondeo              1.6 Diesel                       2014   39190
4 Toyota       RAV4                1.8 Hybrid                       1988  210814
5 VW           Polo                1   Petrol                       2006  127869
6 Ford         Focus               1.4 Petrol                       2018   33603
# ℹ 1 more variable: Price <dbl>

Questions to answer: - How many rows and columns does the dataset have? - What types of variables do you see (numeric, character, etc.)? - Are there any column names that might cause problems? Why?

Your answers:

  • Rows: 50,000 | Columns: 7

  • Variable types:

Column name Variable type
Manufacturer character
Model character
Engine size numeric
Fuel type character
Year of manufacture numeric
Mileage numeric
Price numeric
  • Problematic names: Engine size, Fuel type, Year of manufacture (contain spaces)

1.2 Tibble vs Data Frame

Compare how tibbles and data frames display:

# Look at the tibble version (what we have)
car_data
# A tibble: 50,000 × 7
   Manufacturer Model    `Engine size` `Fuel type` `Year of manufacture` Mileage
   <chr>        <chr>            <dbl> <chr>                       <dbl>   <dbl>
 1 Ford         Fiesta             1   Petrol                       2002  127300
 2 Porsche      718 Cay…           4   Petrol                       2016   57850
 3 Ford         Mondeo             1.6 Diesel                       2014   39190
 4 Toyota       RAV4               1.8 Hybrid                       1988  210814
 5 VW           Polo               1   Petrol                       2006  127869
 6 Ford         Focus              1.4 Petrol                       2018   33603
 7 Ford         Mondeo             1.8 Diesel                       2010   86686
 8 Toyota       Prius              1.4 Hybrid                       2015   30663
 9 VW           Polo               1.2 Petrol                       2012   73470
10 Ford         Focus              2   Diesel                       1992  262514
# ℹ 49,990 more rows
# ℹ 1 more variable: Price <dbl>
# Convert to regular data frame and display
car_df <- as.data.frame(car_data)

Question: What differences do you notice in how they print?

Your answer:

  • Tibble (car_data)
    • Prints a clean preview: shows only the first 10 rows by default.
    • Displays column types.
  • Data frame (car_df)
    • Prints the entire dataset (or up to the max.print limit).
    • Does not show column types alongside values.

Exercise 2: Basic Column Operations

2.1 Selecting Columns

Practice selecting different combinations of columns:

library(dplyr)

# Select just Model and Mileage columns
car_data %>%
  select(Model, Mileage)
# A tibble: 50,000 × 2
   Model      Mileage
   <chr>        <dbl>
 1 Fiesta      127300
 2 718 Cayman   57850
 3 Mondeo       39190
 4 RAV4        210814
 5 Polo        127869
 6 Focus        33603
 7 Mondeo       86686
 8 Prius        30663
 9 Polo         73470
10 Focus       262514
# ℹ 49,990 more rows
# Select Manufacturer, Price, and Fuel type
car_data %>%
  select(Manufacturer, Price, `Fuel type`)
# A tibble: 50,000 × 3
   Manufacturer Price `Fuel type`
   <chr>        <dbl> <chr>      
 1 Ford          3074 Petrol     
 2 Porsche      49704 Petrol     
 3 Ford         24072 Diesel     
 4 Toyota        1705 Hybrid     
 5 VW            4101 Petrol     
 6 Ford         29204 Petrol     
 7 Ford         14350 Diesel     
 8 Toyota       30297 Hybrid     
 9 VW            9977 Petrol     
10 Ford          1049 Diesel     
# ℹ 49,990 more rows
# Challenge: Select all columns EXCEPT Engine size
car_data %>%
  select(-`Engine size`)
# A tibble: 50,000 × 6
   Manufacturer Model      `Fuel type` `Year of manufacture` Mileage Price
   <chr>        <chr>      <chr>                       <dbl>   <dbl> <dbl>
 1 Ford         Fiesta     Petrol                       2002  127300  3074
 2 Porsche      718 Cayman Petrol                       2016   57850 49704
 3 Ford         Mondeo     Diesel                       2014   39190 24072
 4 Toyota       RAV4       Hybrid                       1988  210814  1705
 5 VW           Polo       Petrol                       2006  127869  4101
 6 Ford         Focus      Petrol                       2018   33603 29204
 7 Ford         Mondeo     Diesel                       2010   86686 14350
 8 Toyota       Prius      Hybrid                       2015   30663 30297
 9 VW           Polo       Petrol                       2012   73470  9977
10 Ford         Focus      Diesel                       1992  262514  1049
# ℹ 49,990 more rows

2.2 Renaming Columns

Let’s fix a problematic column name:

# Rename 'Year of manufacture' to year
car_data <- car_data %>%
  rename(year = `Year of manufacture`)

# Check that it worked
names(car_data)
[1] "Manufacturer" "Model"        "Engine size"  "Fuel type"    "year"        
[6] "Mileage"      "Price"       

Question: Why did we need backticks around Year of manufacture but not around year?

Your answer: Because the column name contains spaces, which makes it an invalid R identifier. And backticks tell R to treat it as a literal name. In contrast, year is a valid R variable name (no spaces or special characters), so it can be used directly without backticks.

Exercise 3: Creating New Columns

3.1 Calculate Car Age

# Create an 'age' column (2025 minus year of manufacture)
# Create a mileage_per_year column
car_data <- car_data %>%
  mutate(
    age = 2025 - year,
    mileage_per_year = Mileage / age
  )

# Look at your new columns
car_data %>%
  select(Model, year, age, Mileage, mileage_per_year) %>%
  head()
# A tibble: 6 × 5
  Model       year   age Mileage mileage_per_year
  <chr>      <dbl> <dbl>   <dbl>            <dbl>
1 Fiesta      2002    23  127300            5535.
2 718 Cayman  2016     9   57850            6428.
3 Mondeo      2014    11   39190            3563.
4 RAV4        1988    37  210814            5698.
5 Polo        2006    19  127869            6730.
6 Focus       2018     7   33603            4800.

3.2 Categorize Cars

# Create a price_category column where if price is < 15000, its is coded as budget, between 15000 and 30000 is midrange and greater than 30000 is mid-range (use case_when)
car_data <- car_data %>%
  mutate(
    price_category = case_when(
      Price < 15000 ~ "budget",
      Price >= 15000 & Price <= 30000 ~ "midrange",
      Price > 30000 ~ "mid-range"
    )
  )

# Check your categories select the new column and show it
car_data %>%
  select(price_category) %>%
  head()
# A tibble: 6 × 1
  price_category
  <chr>         
1 budget        
2 mid-range     
3 midrange      
4 budget        
5 budget        
6 midrange      

Exercise 4: Filtering Practice

4.1 Basic Filtering

# Find all Toyota cars
toyota_cars <- car_data %>%
  filter(Manufacturer == "Toyota")

# Find cars with mileage less than 30,000
low_mileage_cars <- car_data %>%
  filter(Mileage < 30000)

# Find luxury cars (from price category) with low mileage
luxury_low_mileage <- car_data %>%
  filter(price_category == "mid-range", Mileage < 30000)

head(toyota_cars)
# A tibble: 6 × 10
  Manufacturer Model `Engine size` `Fuel type`  year Mileage Price   age
  <chr>        <chr>         <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
1 Toyota       RAV4            1.8 Hybrid       1988  210814  1705    37
2 Toyota       Prius           1.4 Hybrid       2015   30663 30297    10
3 Toyota       RAV4            2.2 Petrol       2007   79393 16026    18
4 Toyota       Yaris           1.4 Petrol       1998   97286  4046    27
5 Toyota       RAV4            2.4 Hybrid       2003  117425 11667    22
6 Toyota       Yaris           1.2 Petrol       1992  245990   720    33
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>
head(low_mileage_cars)
# A tibble: 6 × 10
  Manufacturer Model      `Engine size` `Fuel type`  year Mileage Price   age
  <chr>        <chr>              <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
1 Toyota       RAV4                 2   Hybrid       2018   28381 52671     7
2 VW           Golf                 2   Petrol       2020   18985 36387     5
3 BMW          M5                   4   Petrol       2017   22759 97758     8
4 Toyota       RAV4                 2.4 Petrol       2018   24588 49125     7
5 VW           Golf                 2   Hybrid       2018   25017 36957     7
6 Porsche      718 Cayman           2.4 Petrol       2021   14070 69526     4
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>
head(luxury_low_mileage)
# A tibble: 6 × 10
  Manufacturer Model      `Engine size` `Fuel type`  year Mileage Price   age
  <chr>        <chr>              <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
1 Toyota       RAV4                 2   Hybrid       2018   28381 52671     7
2 VW           Golf                 2   Petrol       2020   18985 36387     5
3 BMW          M5                   4   Petrol       2017   22759 97758     8
4 Toyota       RAV4                 2.4 Petrol       2018   24588 49125     7
5 VW           Golf                 2   Hybrid       2018   25017 36957     7
6 Porsche      718 Cayman           2.4 Petrol       2021   14070 69526     4
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>

4.2 Multiple Conditions

# Find cars that are EITHER Honda OR Nissan
honda_nissan <- car_data %>%
  filter(Manufacturer %in% c("Honda", "Nissan"))

# Find cars with price between $20,000 and $35,000
mid_price <- car_data %>%
  filter(between(Price, 20000, 35000))

# Find diesel cars less than 10 years old
diesel_recent <- car_data %>%
  filter(`Fuel type` == "Diesel", 2025 - year < 10) %>%
  count()

head(honda_nissan)
# A tibble: 0 × 10
# ℹ 10 variables: Manufacturer <chr>, Model <chr>, Engine size <dbl>,
#   Fuel type <chr>, year <dbl>, Mileage <dbl>, Price <dbl>, age <dbl>,
#   mileage_per_year <dbl>, price_category <chr>
head(mid_price)
# A tibble: 6 × 10
  Manufacturer Model  `Engine size` `Fuel type`  year Mileage Price   age
  <chr>        <chr>          <dbl> <chr>       <dbl>   <dbl> <dbl> <dbl>
1 Ford         Mondeo           1.6 Diesel       2014   39190 24072    11
2 Ford         Focus            1.4 Petrol       2018   33603 29204     7
3 Toyota       Prius            1.4 Hybrid       2015   30663 30297    10
4 Toyota       Prius            1.4 Hybrid       2016   43893 29946     9
5 Toyota       Prius            1.4 Hybrid       2016   43130 30085     9
6 VW           Passat           1.6 Petrol       2016   64344 23641     9
# ℹ 2 more variables: mileage_per_year <dbl>, price_category <chr>
head(diesel_recent)
# A tibble: 1 × 1
      n
  <int>
1  2040

Question: How many diesel cars are less than 10 years old?

Your answer: 2,040

Exercise 5: Grouping and Summarizing

5.1 Basic Summaries

# Calculate average price by manufacturer
avg_price_by_brand <- car_data %>%
  group_by(Manufacturer) %>%
  summarize(avg_price = mean(Price, na.rm = TRUE))

avg_price_by_brand
# A tibble: 5 × 2
  Manufacturer avg_price
  <chr>            <dbl>
1 BMW             24429.
2 Ford            10672.
3 Porsche         29104.
4 Toyota          14340.
5 VW              10363.
# Calculate average mileage by fuel type
avg_mileage_by_fuel <- car_data %>%
  group_by(`Fuel type`) %>%
  summarize(avg_mileage = mean(Mileage, na.rm = TRUE))

# Count cars by manufacturer
cars_by_manufacturer <- car_data %>%
  count(Manufacturer)

avg_mileage_by_fuel
# A tibble: 3 × 2
  `Fuel type` avg_mileage
  <chr>             <dbl>
1 Diesel          112667.
2 Hybrid          111622.
3 Petrol          112795.
cars_by_manufacturer
# A tibble: 5 × 2
  Manufacturer     n
  <chr>        <int>
1 BMW           4965
2 Ford         14959
3 Porsche       2609
4 Toyota       12554
5 VW           14913

5.2 Categorical Summaries

# Frequency table for price categories
price_freq <- car_data %>%
  count(price_category)

price_freq
# A tibble: 3 × 2
  price_category     n
  <chr>          <int>
1 budget         34040
2 mid-range       6178
3 midrange        9782

Submission Notes

To submit this lab: 1. Make sure your code runs without errors 2. Fill in all the “[YOUR ANSWER]” sections and complete all of the empty code! 3. Save this file in your portfolio’s lab_0/ folder 4. Commit and push to GitHub 5. Check that it appears on your GitHub Pages portfolio site

Questions? Post on the canvas discussion board or come to office hours!